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Abstract
We study the nucleation dynamics and microstructure selection in a model two-dimensional
solid undergoing a square to rhombic transformation, using coarse-grained molecular dynamics
(MD) simulations. We find a range of microstructures depending on the depth of quench. The
transformations are accompanied by the creation of transient and localized non-affine zones
(NAZ), which evolve with the rapidly moving parent–product interface. These plastic regions
are created beyond a threshold stress, at a rate proportional to the local stress. We show that the
dynamics of NAZs determines the selection of microstructure, including the ferrite and
martensite.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The dynamics following a quench across a solid state structural
transition rarely takes the solid to its equilibrium state [1].
Severe dynamical constraints experienced by the product
inclusion within the parent crystal determine the mode of
nucleation and of subsequent growth. Often, solids get stuck
in long-lived microstructures, which depend on the depth of
quench and cooling rate [2]. For example, transformations
occurring at high temperatures are typically accompanied by
large-scale rearrangements of atoms; in this case the elasticity
of the solid plays only a minor role in determining the
microstructure. On the other hand, at low temperatures,
only local rearrangements of atoms are possible; the resulting
microstructures are largely determined by elasticity [3]. These
are just two of the myriad possibilities explored by the
transforming solid. Which of these is actually selected, i.e. can
we construct a dynamical phase diagram for microstructure?

In a set of papers [4–6], we had explored these issues in the
context of a model solid undergoing a two-dimensional square
to rhombic structural transformation. We found that, when the
transformation proceeds at a high temperature, the resulting
product nucleus is isotropic and polycrystalline, while a
low transformation temperature induces the formation of an
anisotropic nucleus, roughly elliptical, consisting of a pair of

twin-related crystallites [6]. The two modes of nucleation may
be denoted ferrite and martensite, borrowing terminology from
the microstructure of steel [1]. By following the nucleation
dynamics in ‘microscopic’ detail, we had established that the
ferrite nucleus is formed following extensive rearrangements
of atomic coordinates, while the martensite nucleus follows
from a transformation where the local connectivity of the
lattice is, to a large extent, preserved. This is consistent
with the two paradigms commonly described in real materials.
However, these two limits are not mutually exclusive; indeed,
for intermediate temperatures, the transformation proceeds
such that both mechanisms may operate at different spatial and
temporal locations, a feature observed in real materials [7].
Further, the different microstructures (twinned and un-
twinned) were obtained simply by tuning appropriate kinetic
parameters.

Our preliminary attempts at a unifying picture [6] were
based on the recognition (from the MD simulation) of the
role played by non-elastic variables, which we identified
with local density fluctuations. We showed that the coupled
dynamics of density fluctuations and elastic strain determined
the microstructure of the growing nucleus. In this, and in a
companion paper [8] we provide a more refined understanding
of solid state nucleation and microstructure selection. Part I
of a set of two papers deals with the results of our extensive
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Figure 1. Contour plot of the zero-temperature energy per particle
for ρ = N/V = 1.05, α = 1 and v3 = 0.204 as a function of the OP
strains (e2, e3) showing a metastable square minimum at (0, 0) and
two degenerate, stable rhombic (oblique) minima at (0,±0.18).

MD simulations: we show that internal stresses generated
during the transformation create local non-affine zones (NAZ)
beyond a threshold stress. We find that the dynamics of these
NAZs determines the selection of the microstructure. We
then highlight four generic principles derived from our MD
simulations and use these to construct an elastoplastic theory
for the dynamics of solid state transformations, the subject of
part II.

The rest of this paper is organized as follows. In the next
section, we describe our model solid and our MD simulations
on the square to rhombic transition. In section 3 we present
our results with special emphasis on the identification of NAZs
and their evolution during the solid state transformation. We
show that our results may be distilled into a set of principles
which underlie microstructure selection in our model. We end
the paper with a summary and conclusion in section 4.

2. The coarse-grained model and molecular
dynamics simulations

A simple effective model which shows transitions between
square and rhombic (a special case of the more general
oblique) lattices comprises of particles which interact via the
potential [5, 6]

1/2
∑

i �= j

V2(ri j) + 1/6
∑

i �= j �=k

V3(ri , r j , rk), (1)

where ri is the position vector of particle i and ri j ≡ |ri j | ≡
|r j − ri |. The anisotropic two-body potential [5] is purely
repulsive and short ranged:

V2(ri j ) = v2

(
σ0

ri j

)12

{1 + α cos2 2θi j} (2)

where σ0 and v2 set the units of length and energy, α is an
‘anisotropic lock-in’ parameter [5] and θi j is the angle between
ri j and an arbitrary external axis. The short-ranged three-body
interaction [9]

V3(ri , r j , rk) = v3
[

fi j f jk sin2 4θi jk + permutations
]
, (3)

where the function fi j ≡ f (ri j ) = (ri j − r0)
2 for ri j <

r0 = 1.8σ0 and 0 otherwise and the angle θi jk is the angle
between the vectors ri j and r jk . The two-body and three-
body interactions favor rhombic and square ground states,
respectively. Inclusion of the two-body anisotropic lock-in
parameter α is a device to vary the jump in the order parameter
from strongly first order (α = 0) to a continuous transition for
v3 = 0, α ∼ 1.5.

The rhombic lattice is a special case of the general oblique
lattice—one of the five possible two-dimensional Bravais
lattices. In general, we need two order parameters (OP) to
describe the transition between square and oblique lattices, i.e.
between the space groups p4mm → p2. Noting that the affine
strain tensor εi j = Ti j − δi j (δi j is the Kronecker tensor)
and i and j = 1, 2 (or x, y); these are the affine shear strain
e3 = εxy = εyx and the deviatoric strain e2 = (εxx − εyy).
Thus from symmetry considerations alone, we would expect to
obtain four symmetry-related product phases [10]. However,
the microscopic model used by us obtains a rhombic lattice for
which e2 identically vanishes and the four equivalent variants
merge in pairs to give two symmetry-related products. To show
this we have plotted in figure 1 the T = 0 energy obtained
for our model solid with the parameters α = 1, v3 = 0.2
and at ρ = 1.05 for various values of e2 and e3, taking
the square lattice as the reference. Apart from the minimum
corresponding to the square lattice we obtain only two other
minima representing the two rhombic variants. The value of e2

at all the three minima is zero. It is therefore sufficient to use
e3 as the sole order parameter (OP) for this transition. When
the anisotropic parameter α = 0, the product rhombic lattice is
close to being triangular, corresponding to a strongly first-order
structural transition with a large jump in the OP (�e3 ∼ ±.3)
and a relatively large volume change [5, 6]. This jump in the
OP at the structural transition can be made arbitrarily small by
taking α > 0 [5]; our qualitative results are exactly the same,
as long as �e3 > 0 at the transition.

The unit of time in our simulations is σ0
√

m/v2,
where m is the particle mass. Using typical values, this
translates to an MD time unit of 1 ps. Knowing the
individual-particle MD trajectories allows us to project time-
dependent atomic positions into time-varying coarse-grained
fields (e.g. e1, e3, etc) whose evolution can be monitored during
the transformation.

Both the two- and three-body potentials are purely
repulsive and therefore the system needs to be confined either
in a box of fixed volume or by an external compression [11].
In this paper, we discuss our results for MD simulations in the
constant number, volume (and shape) and temperature (NV T )
ensemble with periodic boundary conditions using a Nosé–
Hoover thermostat. We have, in addition, carried out extensive
simulations in the constant stress (N	T ) ensemble with open
boundaries using an additional confining potential which, at
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Figure 2. (a) Phase diagram in the T –v3 plane (with α = 0): the
solid line is the phase boundary between square and rhombic crystals.
The dashed line marks the temperature above which anisotropic,
twinned nuclei become rare and is identified as the martensite start
(or Ms) temperature [1] for our model. Typical product nuclei
formed following quenches at (b) T = 0.8 (v3 = 10 → 5.5) to
obtain the isotropic ‘ferrite’ and (c) T = 0.1 (v3 = 5 → 1.65) to
obtain the anisotropic, twinned martensite, starting with an
equilibrated square parent crystal composed of 12 099 particles.

the same time, allows for changes of the overall shape of the
crystal during the transformation. Our main results concerning
the dynamics and mechanism of microstructure selection are
the same in both the ensembles. A detailed comparison of
MD simulation of our model system in various ensembles,
starting from a variety of initial states and for the full range
of the potential parameters is being prepared for publication
elsewhere.

The equations of motion for up to N = 20 000 particles
are integrated using a Verlet scheme [11] with a time step
�t = 10−3. The relaxation time of the Nosé–Hoover
thermostat [11] Q determines how fast the system relaxes to
the ambient temperature. Equilibrium properties are unaffected
by this parameter, which is chosen to produce fast relaxation,
at the same time avoiding numerical instabilities. On the
other hand, dynamical properties can be sensitive to this
parameter. However, our results are robust to changes of Q
within reasonable limits.

An accurate equilibrium phase diagram of the system
(figure 2) in the T –v3 plane for density ρ0 = N/V = 1.1
is obtained by computing and comparing the free energies
of square and rhombic lattices using the technique outlined
in [12].

3. Results: dynamics of nucleation and growth

We shall now describe our results for a study of the nucleation
dynamics of a solid in solid, following a quench across the
structural transition. Our effort will be to extract general
matters of principle from these simulations; we will highlight
these as we go along.

A typical quench from a square to a rhombic solid
into a region where the square lattice is metastable initiates

multiple nucleation events (at least at high temperatures),
making a quantitative analysis of the dynamics of a single
critical nucleus cumbersome. We get over this difficulty by
introducing a nucleation seed at the center of the simulation
box. The seeding consists of replacing the central particle
with a particle whose size σ is smaller by a factor δ ≡
(σ0 − σ)/σ0. We have taken 0.25 � δ � 1, so as to obtain
nucleation events within reasonable computation time. Having
equilibrated the seeded square crystal at large v3, we ‘quench’
across the phase coexistence line by varying the coefficient of
the three-body term v3 at two different temperatures T = 0.8
and 0.1. While the seeding is a matter of convenience at the
higher temperature, it is necessary at the lower temperature.
The transformation at the lower temperature proceeds via
heterogeneous nucleation [6].

In figures 2(b) and (c), we show a snapshot of the resulting
microstructure following a quench from the equilibrated square
lattice at temperatures T = 0.8 and 0.1, respectively. The
colors indicate the local bond-angle order parameter which
is defined to vary from 0 (blue) in the square lattice to 1
(red) in the rhombic [6]. It is clear from the particle position
snapshots, figures 2(b) and (c), that the product nucleus
is isotropic for large temperatures and highly anisotropic
for small temperatures. We identify the isotropic nucleus
with a ferrite and the anisotropic one with martensite [6].
This identification is reinforced by showing that the latter is
twinned.
(1) Solid state transformations predominantly proceed via
nucleation. At low temperatures, the nucleation of the product
solid is heterogeneous and is initiated by ‘seeding’ the parent.

To follow the dynamics in quantitative detail, we compute
the coarse-grained local strain field using the procedure
introduced in [13]. Briefly, we compare the immediate
neighborhood 
, centered around r, of any tagged particle
0 (defined using a cutoff distance equal to the range of the
potential) in the initial, reference, lattice (at time t = 0)
with that of the same particle in the transformed lattice. We
obtain the ‘best-fit’ local affine strain εi j which maps as nearly
as possible all the particles n in 
 from the reference to the
transformed lattice using an affine connection. This is done by
minimizing the (positive) scalar quantity:

D2

(r, t) =

∑

n∈


∑

i

{
r i

n(t) − r i
0(t) −

∑

j

(δi j + εi j)

×(r j
n (0) − r j

0 (0))

}2

(4)

with respect to choices of affine εi j . Here, again, the indices
i and j = x, y, and r i

n(t) and r i
n(0) are the i th component

of the position vector of the nth particle in the reference
and transformed lattice, respectively. Any residual value of
D2


(r, t) is a measure of non-affineness.
Figure 3(a) shows the nucleation and growth of the

twinned martensite nucleus, following the lower temperature
quench—we have plotted the best-fit e3 for snapshot
configurations of N = 110 × 110 particles at time steps of
2000, 3000, 4000 and 5000�t . The twinned structure of the
nucleus composed of the two degenerate rhombi (characterized
by positive and negative values of e3, separated by a sharp
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Figure 3. Best-fit affine strains and residual non-affine deformations,
obtained from MD simulations of particles undergoing a square
to rhombic transition at T = 0.1, for time slices (i) 2000, (ii) 3000,
(iii) 4000 and (iv) 5000�t . Plots obtained by coarse-graining the
N = 110×110 lattice to a 64×64 lattice. (a) Order parameter (shear)
strain e3, colors show e3 from −0.3 (black) to 0 (brown/gray in the
print edition) to 0.3 (yellow/white in the print edition). The twinned
microstructure is clearly visible, even at earlier times. (b) Non-order
parameter (volumetric) strain e1, colors show e1 from −0.5
(black) to 0.3 (yellow/white in the print edition). The equilibrium
value of e1 is nonzero within the rhombic phase. In addition, e1

appears at the two ends of the twinned microstructure due to elastic
coupling to the order parameter e3. (c) Non-affine deformation
χ . Colors show χ ranging from −1 to 1. Note that χ → 0 at
the center of the growing nucleus at large times. The NAZs surround
the growing nucleus and are created at and advected by the front.
Jammed and unjammed NAZs occur at the ‘top’ and ‘bottom’ of
the nucleus, respectively, sharing the same spatial symmetries as e1.

boundary) is evident even at the earliest time, and becomes
more pronounced as time progresses. The constraint of
fixed density forces a dynamical coupling between the affine

OP strain and the affine non-order parameter (NOP) volume
strain e1 = εxx + εyy , so that the transformation is also
accompanied by a volume change, figure 3(b). As a result,
as the transformation proceeds, more and more particles are
pushed up against the surrounding untransformed square lattice
which creates a jammed region at one end and an unjammed
region at the other end of the anisotropic martensitic nucleus,
figure 3(b).
(2) The dynamics of transformation is described by an
affine OP strain (here, shear strain) characterizing the
microstructure of the growing nucleus, and an affine NOP
strain (here, volumetric strain), which is slaved to the former.

We can now use the residual D2

 (4) to extract the

spatio-temporal variation of any non-affine deformation that is
produced during the transformation. To be able to distinguish
between non-affineness arising from different components
of the strain (shear or volumetric) distortion, we need to
incorporate the notion of jamming in the definition of non-
affineness (4). In the context of granular compaction [14] and
glassy materials [15], jamming has been quantified in terms
of changes in the local free volume relative to the reference
state. In our context, this translates into computing the relative
change in the distance between particles within 
 in the
direction of motion of the particles in the nucleus, denoted by
�l; we may thus define a quantity χ(r, t) = −D2 sgn(�l),
which takes both positive (jammed) and negative (unjammed)
values. For the martensite nucleus, the jammed and unjammed
non-affine zones (NAZs) are shown in figure 3(c); as the
transformed region grows, χ is localized and advected by the
transformation front. Note that the spatial symmetries of χ are
the same as that of e1 at all times (compare figures 3(b) and (c)),
and so we associate the non-affineness predominantly with the
NOP or volumetric strain. This restriction of non-affineness
to the NOP strain alone could be specific to the square-to-
rhombus transition; in transitions between other structures,
there could be a fair degree of plasticity associated with the OP
strain too. We will return to this point in [8]. Consistent with
geometrical theories, the NAZs are absent at the twin interface;
this interface is coherent and the twins are simply related to
each other by an affine transformation.

In contrast, figure 4(a) shows the nucleation and growth
of the ferrite nucleus, following the higher temperature
quench—as above, we have plotted the best-fit e3 for snapshot
configurations of N = 110 × 110 particles at time steps of
8000, 10 000, 13 000 and 15 000�t . The nucleus is composed
of polycrystalline grains of the rhombic phase separated by
large-angle grain boundaries. As time progresses, the grains
rotate with respect to each other, giving rise to large non-affine
distortions even in the bulk of the nucleus. This is reflected
in the large values of χ in the bulk of the growing nucleus,
figure 4(b). However, a spatial average of the instantaneous
values χ and e3 over a scale larger than the grain size gives
zero for both. Similarly, a time average of the local χ and e3

over a window corresponding to typical grain reorganization
times gives zero for both. The plastic zone spreads throughout
the product region causing extensive atomic rearrangements.

We now take a close-up look at the NAZs—figures 5(a)
and (b) show snapshots of the atomic positions in the NAZs of
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Figure 4. Best-fit affine strains and residual non-affine deformations,
obtained from MD simulations for a quench at T = 0.8, for time
slices (i) 8000, (ii) 10 000, (iii) 13 000 and (iv) 15 000�t . Same
coarse-graining as in figure 3. (a) Order parameter (shear) strain e3:
colors show e3 from −0.3 (black) to 0.3 (yellow/white in the print
edition). Note that, unlike the martensite, no clear spatial pattern in
e3 can be discerned. The local structure of the product nucleus is
polycrystalline, with individual grains which coarsen with time.
(b) Non-affine deformation χ : colors show χ ranging from −1 to 1.
Note that non-affine regions are present throughout the interior of the
nucleus, signifying extensive plastic deformation during growth.

the martensite and ferrite nucleus, respectively. It is clear that
the atomic configurations in the NAZs are highly amorphous,
with no clear relation to the reference parent lattice. It
seems meaningless to describe NAZs in terms of a density of
dislocations, since the reference state has no unique physical
significance for characterizing the current state in the NAZs.
Even if we were to describe the state of NAZs in terms of
dislocations, the density of dislocations would be so high
as to have overlapping cores, thus rendering this language
inadequate. It is more reasonable to describe the NAZs in terms

of fluctuations in the local density φ(r, t) = (ρ(r, t)−ρ0)/ρ0,
where ρ(r, t) = ∑

n∈
 δ(r − rn(t)), and ρ0 is the average
uniform density. Indeed, in [6], we had studied the dynamics
of φ(r, t) in great detail and demonstrated its involvement with
dynamics of transformation and microstructure selection. Here
we find by explicit computation that φ and χ are related—
localized regions with large φ correspond to large χ and so
on.
(3) Right from its initiation, the transformation is accompanied
by non-affine deformations primarily associated with NOP
(here volumetric) strain. The dynamics of non-affine
deformations determines the microstructure.

We will now show that NAZs are produced when the
local volumetric stress exceeds a threshold value. We compute
the instantaneous local stress from our MD simulations by
spatially averaging the generalized virial:

σi j =
〈
∑

n∈


Fi r j
n

〉

over cells 
M containing M particles where 1 � M <

N . The choice of M is dictated by the mutually competing
considerations of proper averaging and obtaining information
over a fine enough length scale. We have chosen M = 100 as
a compromise between these considerations. Further, in order
to obtain good statistics for any time t , we average over many
independent quench runs. Thus the spatio-temporal resolution
of the computed σ is not as high as the one for the coarse-
grained strain e.

We can now compute the local volumetric stress σ1,
affine volumetric strain e1 and non-affine χ , averaged over
the coarse-grained cell 
M , at different times following the
quench. This is plotted in figures 6(a) and (b), where we
have expressed the local stress as a fractional difference about
the value of σ1 for e1 = 0, viz. the undistorted region.
The σ1–e1 plot shows a linear elastic regime for those coarse-
grained cells where the strain e1 is small; concomitantly
the non-affine χ is zero (figures 6(c) and (d)). Coarse-
grained cells where e1 is larger than a threshold show yielding

(a) (b)

Figure 5. Close-up of a region from the nucleus (a) in martensite: corresponding to figure 3(iii) and (b) ferrite: corresponding to figure 4(iv).
The color code is as follows: black dots—untransformed regions; yellow (white in the print edition) and black circles—affine regions with
+ve and −ve e3; red (light gray in the print edition) and blue (dark gray in the print edition) circles—jammed and unjammed non-affine
regions. In (a) a similar non-affine region arises at the other (bottom) end of the twinned region (not shown).
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Figure 6. Local stress expressed as a fractional difference from the volumetric stress at e1 = 0 (�σ1/σ1(0)) plotted against the local strain at
different times (symbols) obtained for the (a) quench at T = 0.1, averaged over 40 independent quenches, and (b) quench at T = 0.8,
averaged over 35 independent quenches. (c) and (d) are corresponding plots of χ versus e1. The linear Hookean regime represents the local
elastic response at small local stress. Beyond a threshold, the system yields locally, giving rise to a nonlinear stress–strain behavior and
simultaneously non-affine deformations χ �= 0. The regions in real space associated with this local plastic regime are identical to the NAZs.
The contribution to (c) and (d) comes predominantly from unjammed regions due to the (negative) volume change which accompany the
transformation.

(nonlinear and erratic σ1–e1) and appreciable plastic flow, χ �=
0. We have verified that these coarse-grained cells showing
plastic deformation are indeed the NAZs reported above. We
now focus on one coarse-grained cell and study the time
development of σ1, e1 and χ as the transformation proceeds
(figure 7). We find that, at earlier times, the strains are small
and the stress–strain response is elastic. Beyond a yield stress
σ1c, the stress–strain relation is nonlinear, giving rise to non-
affine deformations χ �= 0. Following yielding, the local stress
eventually decreases, often exhibiting oscillatory behavior. We
find that the threshold stresses σ1c, when expressed as a fraction
of the ambient stress, is only weakly dependent on temperature.
(4) Non-affine deformations are produced when the local stress
crosses a threshold. The threshold stress is only weakly
dependent on temperature.

These principles 1–4 highlighted above will form the basis
of our construction of an elastoplastic theory for the dynamics
of solid state transformations (part II). We believe they are
generic, independent of the choice of potential or the nature
of the transformation. In part II, we will show that the
development of microstructure is crucially influenced by the
dynamics of the NOP plastic strain associated with NAZs.

Figure 7. Time dependence of local stress �σ1/σ1(0), strain e1 and
χ near the growing nucleus within a jammed region after a quench at
T = 0.1. Note that initially χ = 0 and the stress (apart from large
statistical fluctuations) is proportional to strain. When the local stress
exceeds a threshold, χ begins to increase, and the stress versus strain
is highly nonlinear.

4. Summary and conclusions

In this paper we have described MD simulations of a
model solid, which shows that the dynamics of structural

6
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transformation is accompanied by transient, localized regions
of plasticity called NAZs. We derive a few basic characteristics
for the dynamics of these NAZs and highlight their role in
microstructure selection. In a companion paper we use these
principles to formulate a continuum theory of microstructure
selection which incorporates the dynamics of these NAZs.

Acknowledgments

We acknowledge several illuminating discussions with
K Bhattacharya and A Saxena, and their useful comments on
the manuscript. We thank G I Menon for a careful reading.
Computer time from DST grant SP/S2/M-20/2001 and support
from the Unit for Nano Science and Technology, S N Bose
National Centre for Basic Sciences is gratefully acknowledged.

References

[1] Cahn R W and Haasen J 1996 Physical Metallurgy 4th edn
(Amsterdam: Elsevier)

Kachaturyan A G 1983 Theory of Structural Transformations in
Solids (New York: Wiley)

[2] Phillips R 2001 Crystals, Defects and Microstructures:
Modeling Across Scales (Cambridge: Cambridge University
Press)

[3] Nishiyama Z 1978 Martensitic Transformation
(New York: Academic)

[4] Rao M and Sengupta S 1997 Phys. Rev. Lett. 78 2168
Rao M and Sengupta S 1999 Curr. Sci. 77 382
Sengupta S and Rao M 2003 Physica A 318 251

[5] Rao M and Sengupta S 2004 J. Phys.: Condens. Matter
16 7733

[6] Rao M and Sengupta S 2003 Phys. Rev. Lett. 91 045502
[7] Bhadeshia H K D H 1992 Bainite in Steels (London: Institute

of Materials)
[8] Paul A, Bhattacharya J, Sengupta S and Rao M 2008

J. Phys.: Condens. Matter 20 365211
[9] Weber T A and Stillinger F H 1993 Phys. Rev. E 48 4351

[10] Hatch D M, Lookman T, Saxena A and Shenoy S R 2003
Phys. Rev. B 68 104105

[11] Frenkel D and Smit B 2002 Understanding Molecular
Simulations 2nd edn (New York: Academic)

[12] Morris J R and Ho K M 1995 Phys. Rev. Lett. 74 940
[13] Falk M L and Langer J S 1998 Phys. Rev. E 57 7192

Langer J S 2001 Phys. Rev. E 64 011504
Langer J S and Pechenik L 2003 Phys. Rev. E 68 061507

[14] Edwards S F and Grinev D V 2001 Jamming and Rheology
ed A Liu and S R Nagel (New York: Taylor and Francis)

[15] Liu A J and Nagel S R 1998 Nature 396 21

7

http://dx.doi.org/10.1103/PhysRevLett.78.2168
http://dx.doi.org/10.1016/S0378-4371(02)01427-9
http://dx.doi.org/10.1088/0953-8984/16/43/013
http://dx.doi.org/10.1103/PhysRevLett.91.045502
http://dx.doi.org/10.1088/0953-8984/20/36/365211
http://dx.doi.org/10.1103/PhysRevE.48.4351
http://dx.doi.org/10.1103/PhysRevB.68.104105
http://dx.doi.org/10.1103/PhysRevLett.74.940
http://dx.doi.org/10.1103/PhysRevE.57.7192
http://dx.doi.org/10.1103/PhysRevE.64.011504
http://dx.doi.org/10.1103/PhysRevE.68.061507
http://dx.doi.org/10.1038/23819

	1. Introduction
	2. The coarse-grained model and molecular dynamics simulations
	3. Results: dynamics of nucleation and growth
	4. Summary and conclusions
	Acknowledgments
	References

